Connecting...

W1siziisimnvbxbpbgvkx3rozw1lx2fzc2v0cy9zawduawz5lxrly2hub2xvz3kvanbnl2jhbm5lci1kzwzhdwx0lmpwzyjdxq

Apache Spark Beyond Shuffling by Holden Karau

W1siziisijiwmtkvmdcvmdgvmtevmtavmjkvmjq2l3blegvscy1wag90by0yoduxnzmuanblzyjdlfsiccisinrodw1iiiwiotawedkwmfx1mdazzsjdxq

Let's spark an Apache Spark chat!

It's one of the most popular distributed systems and with APIs in Scala, Java and Python it really is useful. At Scala Swarm, Big Data Developer Holden Karau delved into exploring the new APIs and how Apache Spark can handle large datasets so let's have a watch.


Apache Spark Beyond Shuffling 

Apache Spark is one the most popular general purpose distributed systems in the past few years. Apache Spark has APIs in Scala, Java, Python and more recently a few different attempts to provide support for R, C#, and Julia. 

This talk looks at Apache Spark from a performance/scaling point of view and the work we need to do to be able to handle large datasets. In essence parts of this talk could be considered “the impact of design decisions from years ago and how to work around them.” It’s not all doom and gloom though, we will explore the new APIs and the exciting new things we can do with them with a brief detour into how to work around some of the trade-offs in the new APIs – but mostly focused on the new exciting shiny things we can play with. A basic background with Apache Spark will probably make the talk more exciting or depressing depending on your point of view but for those new to Apache Spark just enough to understand whats going will be covered at the start. The presenter would of course encourage you to buy and read her books on the topic (“Learning Spark” & “High Performance Spark”), because which presenter doesn’t do that.


This talk was given by Holden Karau at Scala Swarm 2017.